Euclidean sections of direct sums of normed spaces
نویسندگان
چکیده
We study the dimension of “random” Euclidean sections of direct sums of normed spaces. We compare the obtained results with results from [LMS], to show that for the direct sums the standard randomness with respect to the Haar measure on Grassmanian coincides with a much “weaker” randomness of “diagonal” subspaces (Corollary 1.4 and explanation after). We also add some relative information on “phase transition”.
منابع مشابه
Uniquely Remotal Sets in $c_0$-sums and $ell^infty$-sums of Fuzzy Normed Spaces
Let $(X, N)$ be a fuzzy normed space and $A$ be a fuzzy boundedsubset of $X$. We define fuzzy $ell^infty$-sums and fuzzy $c_0$-sums offuzzy normed spaces. Then we will show that in these spaces, all fuzzyuniquely remotal sets are singletons.
متن کاملBEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کاملGeometry of simplices in Minkowski spaces
There are many problems and configurations in Euclidean geometry that were never extended to the framework of (normed or) finite dimensional real Banach spaces, although their original versions are inspiring for this type of generalization, and the analogous definitions for normed spaces represent a promising topic. An example is the geometry of simplices in non-Euclidean normed spaces. We pres...
متن کاملApproximation of an additive mapping in various normed spaces
In this paper, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the following Cauchy-Jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem t...
متن کاملOn the stability of the Pexiderized cubic functional equation in multi-normed spaces
In this paper, we investigate the Hyers-Ulam stability of the orthogonally cubic equation and Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the $2$-variables cubic equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...
متن کامل